當(dāng)前位置:首頁(yè) > 百科知識(shí) > 電子工程 > 正文

氮化鎵

這是一種具有較大禁帶寬度的半導(dǎo)體,屬于所謂寬禁帶半導(dǎo)體之列。它是微波功率晶體管的優(yōu)良材料,也是藍(lán)色光發(fā)光器件中的一種具有重要應(yīng)用價(jià)值的半導(dǎo)體。

  簡(jiǎn)介

  GaN材料的研究與應(yīng)用是目前全球半導(dǎo)體研究的前沿和熱點(diǎn),是研

  制微電子器件、光電子器件的新型半導(dǎo)體材料,并與SIC、金剛石等半導(dǎo)體材料一起,被譽(yù)為是繼第一代Ge、Si半導(dǎo)體材料、第二代GaAs、InP化合物半導(dǎo)體材料之后的第三代半導(dǎo)體材料。它具有寬的直接帶隙、強(qiáng)的原子鍵、高的熱導(dǎo)率、化學(xué)穩(wěn)定性好(幾乎不被任何酸腐蝕)等性質(zhì)和強(qiáng)的抗輻照能力,在光電子、高溫大功率器件和高頻微波器件應(yīng)用方面有著廣闊的前景。

  基本信息

  中文名稱:氮化鎵

  英文名稱:gallium(iii) nitride

  英文別名:Gallium nitride; nitridogallium; gallium nitrogen(-3) anion

  分子量:83.7297

  熔點(diǎn):1700℃

  密度:6.1

  材料特性

  折疊總述

  GaN是極穩(wěn)定的化合物,又是堅(jiān)硬的高熔點(diǎn)材料,熔點(diǎn)約為1700℃,GaN具有高的電離度,在Ⅲ-Ⅴ族化合物中是最高的(0.5或0.43)。在大氣壓力下,GaN晶體一般是六方纖鋅礦結(jié)構(gòu)。它在一個(gè)元胞中有4個(gè)原子,原子體積大約為GaAs的一半。因?yàn)槠溆捕雀?,又是一種良好的涂層保護(hù)材料。

  化學(xué)特性

  在室溫下,GaN不溶于水、酸和堿,而在熱的堿溶液中以非常緩慢的速度溶解。NaOH、H2SO4和H3PO4能較快地腐蝕質(zhì)量差的GaN,可用于這些質(zhì)量不高的GaN晶體的缺陷檢測(cè)。GaN在HCL或H2氣下,在高溫下呈現(xiàn)不穩(wěn)定特性,而在N2氣下最為穩(wěn)定。

  結(jié)構(gòu)特性

  表1列出了纖鋅礦GaN和閃鋅礦GaN的特性比較。

  折疊電學(xué)特性

  GaN的電學(xué)特性是影響器件的主要因素。未有意摻雜的GaN在各種情況下都呈n型,最好的樣品的電子濃度約為4×1016/cm3。一般情況下所制備的P型樣品,都是高補(bǔ)償?shù)摹?/p>

  很多研究小組都從事過這方面的研究工作,其中中村報(bào)道了GaN最高遷移率數(shù)據(jù)在室溫和液氮溫度下分別為μn=600cm2/v&middot;s和μn= 1500cm2/v·s,相應(yīng)的載流子濃度為n=4×1016/cm3和n=8×1015/cm3。近年報(bào)道的MOCVD沉積GaN層的電子濃度數(shù)值為4 ×1016/cm3、<1016/cm3;等離子激活MBE的結(jié)果為8×103/cm3、<1017/cm3。

  未摻雜載流子濃度可控制在1014~1020/cm3范圍。另外,通過P型摻雜工藝和Mg的低能電子束輻照或熱退火處理,已能將摻雜濃度控制在1011~1020/cm3范圍。

  光學(xué)特性

  人們關(guān)注的GaN的特性,旨在它在藍(lán)光和紫光發(fā)射器件上的應(yīng)用。Maruska和Tietjen首先精確地測(cè)量了GaN直接隙能量為3.39eV。幾個(gè)小組研究了GaN帶隙與溫度的依賴關(guān)系,Pankove等人估算了一個(gè)帶隙溫度系數(shù)的經(jīng)驗(yàn)公式:dE/dT=-6.0×10-4eV/k。 Monemar測(cè)定了基本的帶隙為3.503eV±0.0005eV,在1.6kT為Eg=3.503+(5.08×10-4T2)/(T-996) eV。

  另外,還有不少人研究GaN的光學(xué)特性。

  材料生長(zhǎng)

  GaN材料的生長(zhǎng)是在高溫下,通過TMGa分解出的Ga與NH3的化學(xué)反應(yīng)實(shí)現(xiàn)的,其可逆的反應(yīng)方程式為:

  Ga+NH3=GaN+3/2H2

  生長(zhǎng)GaN需要一定的生長(zhǎng)溫度,且需要一定的NH3分壓。人們通常采用的方法有常規(guī)MOCVD(包括APMOCVD、LPMOCVD)、等離子體增強(qiáng)MOCVD(PE-MOCVD)和電子回旋共振輔助MBE等。所需的溫度和NH3分壓依次減少。本工作采用的設(shè)備是AP-MOCVD,反應(yīng)器為臥式,并經(jīng)過特殊設(shè)計(jì)改裝。用國(guó)產(chǎn)的高純TMGa及NH3作為源程序材料,用DeZn作為P型摻雜源,用(0001)藍(lán)寶石與(111)硅作為襯底采用高頻感應(yīng)加熱,以低阻硅作為發(fā)熱體,用高純H2作為MO源的攜帶氣體。用高純N2作為生長(zhǎng)區(qū)的調(diào)節(jié)。用HALL測(cè)量、雙晶衍射以及室溫PL光譜作為GaN的質(zhì)量表征。要想生長(zhǎng)出完美的GaN,存在兩個(gè)關(guān)鍵性問題,一是如何能避免NH3和TMGa的強(qiáng)烈寄生反應(yīng),使兩反應(yīng)物比較完全地沉積于藍(lán)寶石和Si襯底上,二是怎樣生長(zhǎng)完美的單晶。為了實(shí)現(xiàn)第一個(gè)目的,設(shè)計(jì)了多種氣流模型和多種形式的反應(yīng)器,最后終于摸索出獨(dú)特的反應(yīng)器結(jié)構(gòu),通過調(diào)節(jié)器TMGa管道與襯底的距離,在襯底上生長(zhǎng)出了GaN。同時(shí)為了確保GaN的質(zhì)量及重復(fù)性,采用硅基座作為加熱體,防止了高溫下NH3和石墨在高溫下的劇烈反應(yīng)。對(duì)于第二個(gè)問題,采用常規(guī)兩步生長(zhǎng)法,經(jīng)過高溫處理的藍(lán)寶石材料,在550℃,首先生長(zhǎng)250A0左右的GaN緩沖層,而后在1050℃生長(zhǎng)完美的GaN單晶材料。對(duì)于 Si襯底上生長(zhǎng)GaN單晶,首先在1150℃生長(zhǎng)AlN緩沖層,而后生長(zhǎng)GaN結(jié)晶。生長(zhǎng)該材料的典型條件如下:

  NH3:3L/min

  TMGa:20μmol/minV/Ⅲ=6500

  N2:3~4L/min

  H2:2<1L/min

  人們普遍采用Mg作為摻雜劑生長(zhǎng)P型GaN,然而將材料生長(zhǎng)完畢后要在800℃左右和在N2的氣氛下進(jìn)行高溫退火,才能實(shí)現(xiàn)P型摻雜。本實(shí)驗(yàn)采用 Zn作摻雜劑,DeZ2n/TMGa=0.15,生長(zhǎng)溫度為950℃,將高溫生長(zhǎng)的GaN單晶隨爐降溫,Zn具有P型摻雜的能力,因此在本征濃度較低時(shí),可望實(shí)現(xiàn)P型摻雜。

  但是,MOCVD使用的Ga源是TMGa,也有副反應(yīng)物產(chǎn)生,對(duì)GaN膜生長(zhǎng)有害,而且,高溫下生長(zhǎng),雖然對(duì)膜生長(zhǎng)有好處,但也容易造成擴(kuò)散和多相膜的相分離。中村等人改進(jìn)了MOCVD裝置,他們首先使用了TWO-FLOWMOCVD(雙束流MOCVD)技術(shù),并應(yīng)用此法作了大量的研究工作,取得成功。雙束流MOCVD生長(zhǎng)示意圖如圖1所示。反應(yīng)器中由一個(gè)H2+NH3+TMGa組成的主氣流,它以高速通過石英噴平行于襯底通入,另一路由H2+N2 形成輔氣流垂直噴向襯底表面,目的是改變主氣流的方向,使反應(yīng)劑與襯底表面很好接觸。用這種方法直接在α-Al2O3基板(C面)生長(zhǎng)的GaN膜,電子載流子濃度為1×1018/cm3,遷移率為200cm2/v·s,這是直接生長(zhǎng)GaN膜的最好值。

  材料應(yīng)用

  新型電子器件

  GaN材料系列具有低的熱產(chǎn)生率和高的擊穿電場(chǎng),是研制高溫大功率電子器件和高頻微波器件的重要材料。目前,隨著 MBE技術(shù)在GaN材料應(yīng)用中的進(jìn)展和關(guān)鍵薄膜生長(zhǎng)技術(shù)的突破,成功地生長(zhǎng)出了GaN多種異質(zhì)結(jié)構(gòu)。用GaN材料制備出了金屬場(chǎng)效應(yīng)晶體管(MESFET)、異質(zhì)結(jié)場(chǎng)效應(yīng)晶體管(HFET)、調(diào)制摻雜場(chǎng)效應(yīng)晶體管(MODFET)等新型器件。調(diào)制摻雜的AlGaN/GaN結(jié)構(gòu)具有高的電子遷移率(2000cm2/v·s)、高的飽和速度(1×107cm/s)、較低的介電常數(shù),是制作微波器件的優(yōu)先材料;GaN較寬的禁帶寬度(3.4eV) 及藍(lán)寶石等材料作襯底,散熱性能好,有利于器件在大功率條件下工作。

  光電器件

  GaN材料系列是一種理想的短波長(zhǎng)發(fā)光器件材料,GaN及其合金的帶隙覆蓋了從紅色到紫外的光譜范圍。自從1991年日本研制出同質(zhì)結(jié)GaN藍(lán)色 LED之后,InGaN/AlGaN雙異質(zhì)結(jié)超亮度藍(lán)色LED、InGaN單量子阱GaNLED相繼問世。目前,Zcd和6cd單量子阱GaN藍(lán)色和綠色 LED已進(jìn)入大批量生產(chǎn)階段,從而填補(bǔ)了市場(chǎng)上藍(lán)色LED多年的空白。以發(fā)光效率為標(biāo)志的LED發(fā)展歷程見圖3。藍(lán)色發(fā)光器件在高密度光盤的信息存取、全光顯示、激光打印機(jī)等領(lǐng)域有著巨大的應(yīng)用市場(chǎng)。隨著對(duì)Ⅲ族氮化物材料和器件研究與開發(fā)工作的不斷深入,GaInN超高度藍(lán)光、綠光LED技術(shù)已經(jīng)實(shí)現(xiàn)商品化,現(xiàn)在世界各大公司和研究機(jī)構(gòu)都紛紛投入巨資加入到開發(fā)藍(lán)光LED的競(jìng)爭(zhēng)行列。

  1993年,Nichia公司首先研制成發(fā)光亮度超過lcd的高亮度GaInN/AlGaN異質(zhì)結(jié)藍(lán)光LED,使用摻Zn的GaInN作為有源層,外量子效率達(dá)到2.7%,峰值波長(zhǎng)450nm,并實(shí)現(xiàn)產(chǎn)品的商品化。1995年,該公司又推出了光輸出功率為2.0mW,亮度為6cd商品化GaN綠光 LED產(chǎn)品,其峰值波長(zhǎng)為525nm,半峰寬為40nm。最近,該公司利用其藍(lán)光LED和磷光技術(shù),又推出了白光固體發(fā)光器件產(chǎn)品,其色溫為6500K,效率達(dá)7.5流明/W。除Nichia公司以外,HP、Cree等公司相繼推出了各自的高亮度藍(lán)光LED產(chǎn)品。高亮度LED的市場(chǎng)預(yù)計(jì)將從1998年的 3.86億美元躍升為2003年的10億美元。高亮度LED的應(yīng)用主要包括汽車照明,交通信號(hào)和室外路標(biāo),平板金色顯示,高密度DVD存儲(chǔ),藍(lán)綠光對(duì)潛通信等。

  在成功開發(fā)Ⅲ族氮化物藍(lán)光LED之后,研究的重點(diǎn)開始轉(zhuǎn)向Ⅲ族氮化物藍(lán)光LED器件的開發(fā)。藍(lán)光LED在光控測(cè)和信息的高密度光存儲(chǔ)等領(lǐng)域具有廣闊的應(yīng)用前景。目前Nichia公司在GaN藍(lán)光LED領(lǐng)域居世界領(lǐng)先地位,其GaN藍(lán)光LED室溫下2mW連續(xù)工作的壽命突破10000小時(shí)。HP公司以藍(lán)寶石為襯底,研制成功光脊波導(dǎo)折射率導(dǎo)引GaInN/AlGaN多量子阱藍(lán)光LED。Cree公司和Fujitsu公司采用SiC作為襯底材料,開發(fā)Ⅲ 族氮化物藍(lán)光LED,CreeResearch公司首家報(bào)道了SiC上制作的CWRT藍(lán)光激光器,該激光器彩霞的是橫

  向器件結(jié)構(gòu)。富士通繼Nichia,CreeResearch和索尼等公司之后,宣布研制成了InGaN藍(lán)光激光器,該激光器可在室溫下CW應(yīng)用,其結(jié)構(gòu)是在SiC襯底上生長(zhǎng)的,并且采用了垂直傳導(dǎo)結(jié)構(gòu)(P型和n型接觸分別制作在晶片的頂面和背面),這是首次報(bào)道的垂直器件結(jié)構(gòu)的CW藍(lán)光激光器。

  在探測(cè)器方面,已研制出GaN紫外探測(cè)器,波長(zhǎng)為369nm,其響應(yīng)速度與Si探測(cè)器不相上下。但這方面的研究還處于起步階段。GaN探測(cè)器將在火焰探測(cè)、導(dǎo)彈預(yù)警等方面有重要應(yīng)用。

  應(yīng)用前景

  對(duì)于GaN材料,長(zhǎng)期以來由于襯底單晶沒有解決,異質(zhì)外延缺陷密度相當(dāng)高,但是器件水平已可實(shí)用化。1994年日亞化學(xué)所制成1200mcd的 LED,1995年又制成Zcd藍(lán)光(450nmLED),綠光12cd(520nmLED);日本1998年制定一個(gè)采用寬禁帶氮化物材料開發(fā)LED的 7年規(guī)劃,其目標(biāo)是到2005年研制密封在熒光管內(nèi)、并能發(fā)出白色光的高能量紫外光LED,這種白色LED的功耗僅為白熾燈的1/8,是熒光燈的1/2, 其壽命是傳統(tǒng)熒光燈的50倍~100倍。這證明GaN材料的研制工作已取相當(dāng)成功,并進(jìn)入了實(shí)用化階段。InGaN系合金的生成,InGaN/AlGaN 雙質(zhì)結(jié)LED,InGaN單量子阱LED,InGaN多量子阱LED等相繼開發(fā)成功。InGaNSQWLED6cd高亮度純綠茶色、2cd高亮度藍(lán)色 LED已制作出來,今后,與AlGaP、AlGaAs系紅色LED組合形成亮亮度全色顯示就可實(shí)現(xiàn)。這樣三原色混成的白色光光源也打開新的應(yīng)用領(lǐng)域,以高可靠、長(zhǎng)壽命LED為特征的時(shí)代就會(huì)到來。日光燈和電燈泡都將會(huì)被LED所替代。LED將成為主導(dǎo)產(chǎn)品,GaN晶體管也將隨材料生長(zhǎng)和器件工藝的發(fā)展而迅猛發(fā)展,成為新一代高溫度頻大功率器件。

  缺點(diǎn)和問題

  一方面,在理論上由于其能帶結(jié)構(gòu)的關(guān)系,其中載流子的有效質(zhì)量較大,輸運(yùn)性質(zhì)較差,則低電場(chǎng)遷移率低,高頻性能差。

  另一方面,現(xiàn)在用異質(zhì)外延(以藍(lán)寶石和SiC作為襯底)技術(shù)生長(zhǎng)出的GaN單晶,還不太令人滿意(這有礙于GaN器件的發(fā)展),例如位錯(cuò)密度達(dá)到了108~1010/cm2(雖然藍(lán)寶石和SiC與GaN的晶體結(jié)構(gòu)相似,但仍然有比較大的晶格失配和熱失配);未摻雜GaN的室溫背景載流子(電子)濃度高達(dá)1017cm-3(可能與N空位、替位式Si、替位式O等有關(guān)),并呈現(xiàn)出n型導(dǎo)電;雖然容易實(shí)現(xiàn)n型摻雜(摻Si可得到電子濃度1015~1020/cm3、室溫遷移率>300 cm2/ V.s 的n型GaN),但p型摻雜水平太低(主要是摻Mg),所得空穴濃度只有1017~1018/cm3,遷移率<10cm2/V.s,摻雜效率只有0.1%~1%(可能是H的補(bǔ)償和Mg的自身電離能較高所致)。

  優(yōu)點(diǎn)與長(zhǎng)處

 ?、俳麕挾却?3.4eV),熱導(dǎo)率高(1.3W/cm-K),則工作溫度高,擊穿電壓高,抗輻射能力強(qiáng);

  ②導(dǎo)帶底在Γ點(diǎn),而且與導(dǎo)帶的其他能谷之間能量差大,則不易產(chǎn)生谷間散射,從而能得到很高的強(qiáng)場(chǎng)漂移速度(電子漂移速度不易飽和);

  ③GaN易與AlN、InN等構(gòu)成混晶,能制成各種異質(zhì)結(jié)構(gòu),已經(jīng)得到了低溫下遷移率達(dá)到105cm2/Vs的2-DEG(因?yàn)?-DEG面密度較高,有效地屏蔽了光學(xué)聲子散射、電離雜質(zhì)散射和壓電散射等因素);

 ?、芫Ц駥?duì)稱性比較低(為六方纖鋅礦結(jié)構(gòu)或四方亞穩(wěn)的閃鋅礦結(jié)構(gòu)),具有很強(qiáng)的壓電性(非中心對(duì)稱所致)和鐵電性(沿六方c軸自發(fā)極化):在異質(zhì)結(jié)界面附近產(chǎn)生很強(qiáng)的壓電極化(極化電場(chǎng)達(dá)2MV/cm)和自發(fā)極化(極化電場(chǎng)達(dá)3MV/cm),感生出極高密度的界面電荷,強(qiáng)烈調(diào)制了異質(zhì)結(jié)的能帶結(jié)構(gòu),加強(qiáng)了對(duì)2-DEG的二維空間限制,從而提高了2-DEG的面密度(在AlGaN/GaN異質(zhì)結(jié)中可達(dá)到1013/cm2,這比AlGaAs/GaAs異質(zhì)結(jié)中的高一個(gè)數(shù)量級(jí)),這對(duì)器件工作很有意義。

  總之,從整體來看,GaN的優(yōu)點(diǎn)彌補(bǔ)了其缺點(diǎn),特別是通過異質(zhì)結(jié)的作用,其有效輸運(yùn)性能并不亞于GaAs,而制作微波功率器件的效果(微波輸出功率密度上)還往往要遠(yuǎn)優(yōu)于現(xiàn)有的一切半導(dǎo)體材料。

  主要問題

  因?yàn)镚aN是寬禁帶半導(dǎo)體,極性太大,則較難以通過高摻雜來獲得較好的金屬-半導(dǎo)體的歐姆接觸,這是GaN器件制造中的一個(gè)難題,故GaN器件性能的好壞往往與歐姆接觸的制作結(jié)果有關(guān)?,F(xiàn)在比較好的一種解決辦法就是采用異質(zhì)結(jié),首先讓禁帶寬度逐漸過渡到較小一些,然后再采用高摻雜來實(shí)現(xiàn)歐姆接觸,但這種工藝較復(fù)雜。總之,歐姆接觸是GaN器件制造中需要很好解決的一個(gè)主要問題。


內(nèi)容來自百科網(wǎng)