一、基本信息
主要指導(dǎo)思想:在確保穩(wěn)定提升性能的基礎(chǔ)上,節(jié)能化設(shè)計(jì)各總成零部件,持續(xù)優(yōu)化車型譜。
實(shí)驗(yàn)證明,若汽車整車重量降低10%,燃油效率可提高6%—8%;汽車整備質(zhì)量每減少100公斤,百公里油耗可降低0.3—0.6升;汽車重量降低1%,油耗可降低0.7%。當(dāng)前,由于環(huán)保和節(jié)能的需要,汽車的輕量化已經(jīng)成為世界汽車發(fā)展的潮流。
二、主要途徑
?、倨囍髁饕?guī)格車型持續(xù)優(yōu)化,規(guī)格主參數(shù)尺寸保留的前提下,提升整車結(jié)構(gòu)強(qiáng)度,降低耗材用量;
?、诓捎幂p質(zhì)材料。如鋁、鎂、陶瓷、塑料、玻璃纖維或碳纖維復(fù)合材料等;
?、鄄捎糜?jì)算機(jī)進(jìn)行結(jié)構(gòu)設(shè)計(jì)。如采用有限元分析、局部加強(qiáng)設(shè)計(jì)等;
?、懿捎贸休d式車身,減薄車身板料厚度等。
其中,當(dāng)前的主要汽車輕量化措施主要是采用輕質(zhì)材料。
三、新材料
車用材料主要通過(guò)汽車的輕量化來(lái)對(duì)燃料經(jīng)濟(jì)性改善作出貢獻(xiàn)。理論分析和試驗(yàn)結(jié)果都表明,輕量化是改善汽車燃料經(jīng)濟(jì)性的有效途徑。為了適應(yīng)汽車輕量化的要求,一些新材料應(yīng)運(yùn)而生并擴(kuò)大了應(yīng)用范圍。
有色合金
以乘用車來(lái)說(shuō),1973年每輛車所使用的有色合金占全部用材的重量比為5.0%,1980年增至5.6%,而1997年則達(dá)到了9.6%。有色合金在汽車上應(yīng)用量的快速增長(zhǎng)是汽車材料發(fā)展的大趨勢(shì)。
鋁合金
鋁的密度約為鋼的1/3,是應(yīng)用最廣泛的輕量化材料。以美國(guó)生產(chǎn)的汽車產(chǎn)品為例,1976年每車用鋁合金僅39kg,1982年達(dá)到62kg,而1998年則達(dá)到了100kg。
(1)鑄造鋁合金
許多種元素都可以作為鑄造鋁合金的合金元素,但只有Si、Cu、Mg、Mn、Zn、Li在大量生產(chǎn)中具有重要意義。當(dāng)然,在汽車上廣泛應(yīng)用的并不是上述簡(jiǎn)單的二元合金,而是多種元素同時(shí)添加以獲得好的綜合性能。
汽車工業(yè)是鋁鑄件的主要市場(chǎng),例如日本,鋁鑄件的76%、鋁壓鑄件的77%為汽車鑄件。鋁合金鑄件主要應(yīng)用于發(fā)動(dòng)機(jī)氣缸體、氣缸蓋、活塞、進(jìn)氣歧管、搖臂、發(fā)動(dòng)機(jī)懸置支架、空壓機(jī)連桿、傳動(dòng)器殼體、離合器殼體、車輪、制動(dòng)器零件、把手及罩蓋殼體類零件等。
鋁鑄件中不可避免地存在缺陷,壓鑄件還不能熱處理,因此在用鋁合金來(lái)生產(chǎn)要求較高強(qiáng)度鑄件時(shí)受到限制。為此在鑄件生產(chǎn)工藝上作了改進(jìn),鑄造鍛造法和半固態(tài)成型法將是未來(lái)較多用的工藝。
?。?)變形鋁合金
變形鋁合金指鋁合金板帶材、擠壓型材和鍛造材,在汽車上主要用于車身面板、車身骨架、發(fā)動(dòng)機(jī)散熱器、空調(diào)冷凝器、蒸發(fā)器、車輪、裝飾件和懸架系統(tǒng)零件等。
由于輕量化效果明顯,鋁合金在車身上的應(yīng)用正在擴(kuò)大。如1990年9月開始銷售的日本本田NSX車采用了全鋁承載式車身,比用冷軋鋼板制造的同樣車身輕200kg,引起全世界的矚目。NSX全車用鋁材達(dá)到31.3%,如在全鋁車身上,外板使用6000系列合金,內(nèi)板使用5052-0合金,骨架大部使用5182-0合金;由于側(cè)門框?qū)?qiáng)度和剛度要求很高,使用以6N01合金為基礎(chǔ)、適當(dāng)調(diào)整了Mg和Si含量的合金。在歐美也有用2036和2008合金作車身內(nèi)外板的。
鋁散熱器發(fā)源于歐洲而后遍及全世界。在歐洲,到20世紀(jì)80年代后期鋁散熱器已占領(lǐng)市場(chǎng)的90%。隨?車用空調(diào)、油冷卻器等的大量使用,鋁熱交換器的市場(chǎng)迅速擴(kuò)大。從材料的角度看,鋁在熱交換器上的廣泛應(yīng)用在很大程度上歸功于包覆料覆層鋁板和鋁帶的成功開發(fā)。
?。?)鋁基復(fù)合材料
鋁基復(fù)合材料密度低、比強(qiáng)度和比模量高、抗熱疲勞性能好,但在汽車上的應(yīng)用受到價(jià)格及生產(chǎn)質(zhì)量控制等方面的制約,還沒有形成很大的規(guī)模。目前,鋁基復(fù)合材料在連桿、活塞、氣缸體內(nèi)孔、制動(dòng)盤、制動(dòng)鉗和傳動(dòng)軸管等零件上的試驗(yàn)或使用顯示出了卓越的性能,如本田公司開發(fā)成功的由不?鋼絲增強(qiáng)的鋁基復(fù)合材料連桿比鋼制連桿降重30%,對(duì)1.2L的汽油發(fā)動(dòng)機(jī)可提高燃料經(jīng)濟(jì)性5%;采用激冷鋁合金粉末與SiC粉末(重量百分?jǐn)?shù)2%)混合并擠壓成棒材,用此棒材經(jīng)鍛造成型的活塞因強(qiáng)度高可降重20%,發(fā)動(dòng)機(jī)功率大幅度提高;用鋁基復(fù)合材料強(qiáng)化活塞頭部而取消第一道環(huán)槽的奧氏體鑄鐵鑲塊可降重20%;鋁基復(fù)合材料制動(dòng)盤比鑄鐵制動(dòng)盤降重50%。
鎂合金
鎂的密度約為鋁的2/3,在實(shí)際應(yīng)用的金屬中是最輕的。鎂合金的吸振能力強(qiáng)、切削性能好、金屬模鑄造性能好,很適合制造汽車零件。
鎂合金大部分以壓鑄件的形式在汽車上應(yīng)用,鎂壓鑄件的生產(chǎn)效率比鋁高30%~50%。新開發(fā)的無(wú)孔壓鑄法(PoreFreeDiecast)可生產(chǎn)出沒有氣孔且可熱處理的鎂壓鑄件。
鎂鑄件在汽車上使用最早的實(shí)例是車輪輪輞。在汽車上試用或應(yīng)用鎂合金的實(shí)例還有離合器殼體、離合器踏板、制動(dòng)踏板固定支架、儀表板骨架、座椅、轉(zhuǎn)向柱部件、轉(zhuǎn)向盤輪芯、變速箱殼體、發(fā)動(dòng)機(jī)懸置、氣缸蓋和氣缸蓋罩蓋等。與傳統(tǒng)的鋅制轉(zhuǎn)向柱上支架相比,鎂制件降重65%;與傳統(tǒng)的鋼制轉(zhuǎn)向輪芯相比,鎂制件降重45%;與全鋁氣缸蓋相比,鎂制件降重30%;與傳統(tǒng)的鋼制沖壓焊接結(jié)構(gòu)制動(dòng)踏板支架相比,整體的鎂鑄件降重40%,同時(shí)其剛性也得以改善。
鎂基復(fù)合材料的研究也有進(jìn)展,以SiC顆粒為增強(qiáng)體,采用液態(tài)攪拌技術(shù)得到的鎂基復(fù)合材料具有很好的性能且生產(chǎn)成本較低。在AZ91合金中加入25%的SiC顆粒增強(qiáng)的復(fù)合材料比基體合金拉伸強(qiáng)度提高23%,屈服強(qiáng)度提高47%,彈性模量提高72%。
鈦合金
鈦的密度為4.5g/cm3,具有比強(qiáng)度高、高溫強(qiáng)度高和耐腐蝕等優(yōu)點(diǎn)。由于鈦的價(jià)格昂貴,至今只見在賽車和個(gè)別豪華車上少量應(yīng)用。盡管如此,對(duì)鈦合金在汽車上應(yīng)用的試驗(yàn)研究工作卻不少。例如用α+β系鈦合金制造的發(fā)動(dòng)機(jī)連桿,強(qiáng)度相當(dāng)于45鋼調(diào)質(zhì)的水平,而重量可以降低30%;β系鈦合金(Ti-13V-11Cr-3Al等)經(jīng)強(qiáng)冷加工和時(shí)效處理,強(qiáng)度可達(dá)2000MPa,可用來(lái)制造懸架彈簧、氣門彈簧和氣門等,與拉伸強(qiáng)度為2100MPa的高強(qiáng)度鋼相比,鈦彈簧可降重20%。
鈦合金應(yīng)用的最大阻力來(lái)自其高價(jià)格,豐田中央研究所開發(fā)了一種成本較低的鈦基復(fù)合材料。該復(fù)合材料以Ti-6Al-4V合金為基體,以TiB為增強(qiáng)體,用粉末冶金法生產(chǎn),已在發(fā)動(dòng)機(jī)連桿上應(yīng)用。
四、新工藝
鋼鐵材料在與有色合金和高分子材料的競(jìng)爭(zhēng)中繼續(xù)發(fā)揮其價(jià)格便宜、工藝成熟的優(yōu)勢(shì),通過(guò)高強(qiáng)度化和有效的強(qiáng)化措施可充分發(fā)揮其強(qiáng)度潛力,以致迄今為止仍然是在汽車生產(chǎn)上使用最多的材料。
高強(qiáng)度鋼板
轎車自重的25%在車身,車身材料的輕量化舉足輕重。20世紀(jì)90年代,世界范圍內(nèi)的35家主要鋼鐵企業(yè)合作完成了“超輕鋼質(zhì)汽車車身”(ULSAB-UltraLightSteelAutoBody)課題。該課題的研究成果表明,車身鋼板的90%使用現(xiàn)已大量生產(chǎn)的高強(qiáng)度鋼板(包括高強(qiáng)度、超高強(qiáng)度和夾層減重鋼板),可以在不增加成本的前提下實(shí)現(xiàn)車身降重25%(以4門轎車為參照),且靜態(tài)扭轉(zhuǎn)剛度提高80%,靜態(tài)彎曲剛度提高52%,第一車身結(jié)構(gòu)模量提高58%,滿足全部碰撞法規(guī)要求。當(dāng)然,這還是一個(gè)研究的成果,高強(qiáng)度鋼板在車身上的實(shí)際應(yīng)用還未達(dá)到如此高的水平。在普通的IF鋼板的基礎(chǔ)上相繼開發(fā)了高強(qiáng)度IF鋼板和烘烤硬化IF鋼板,在保持高成型性的同時(shí)提高了強(qiáng)度和抗凹陷性,為車身鋼板的減薄和實(shí)現(xiàn)輕量化創(chuàng)造了條件。
加入Ti、Nb和V等元素的析出強(qiáng)化鋼板拉伸強(qiáng)度在500~750MPa,可用于車輪和其它底盤零件。
近來(lái)開發(fā)的多相鋼有相當(dāng)大的應(yīng)用潛力。其中鐵素體-貝氏體鋼強(qiáng)度級(jí)別為500MPa,雙相(DP)鋼和相變誘發(fā)塑性(TRIP)鋼強(qiáng)度級(jí)別為600~800MPa,復(fù)相(CP)鋼強(qiáng)度級(jí)別在1000MPa或更高。這些鋼的成型性能也很好。
激光拼焊毛坯(TailoredBlank)是新近開發(fā)并應(yīng)用的鋼板輕量化技術(shù)。在前述ULSAB車身有18個(gè)零件采用了此技術(shù)。
結(jié)構(gòu)鋼
鋼鐵材料的用量雖逐年減少,但高強(qiáng)度鋼的用量卻有相當(dāng)大的增加。高強(qiáng)度結(jié)構(gòu)鋼使零件設(shè)計(jì)得更緊湊和小型化,有助于汽車的輕量化。
(1)彈簧
懸架彈簧輕量化的最有效方法是提高彈簧的設(shè)計(jì)許用應(yīng)力。但是為了實(shí)現(xiàn)這種高應(yīng)力下的輕量化,材料的高強(qiáng)度化是不可少的。在傳統(tǒng)的Si-Mn彈簧鋼的基礎(chǔ)上通過(guò)降低C并添加Ni、Cr、Mo和V等合金元素,開發(fā)出強(qiáng)度和韌性都很高的鋼種,設(shè)計(jì)許用應(yīng)力可達(dá)1270MPa,這種彈簧鋼的應(yīng)用可實(shí)現(xiàn)40%的輕量化。在傳統(tǒng)的Cr-V系彈簧鋼中添加Nb可提高鋼的抗延遲斷裂性能,結(jié)合改進(jìn)的奧氏體軋制成型,可使鋼的拉伸強(qiáng)度達(dá)到1800MPa的水平。
氣門彈簧用的Si-Cr鋼中添加V,通過(guò)晶粒細(xì)化確保韌性,由增C提高強(qiáng)度。這樣改進(jìn)后,彈簧的高周疲勞強(qiáng)度約提高8%,可實(shí)現(xiàn)15%的輕量化。通過(guò)有限元分析,螺旋彈簧內(nèi)、外側(cè)應(yīng)力均勻分布的檸檬形斷面彈簧鋼絲得以開發(fā),使彈簧實(shí)現(xiàn)7%的輕量化。
提高彈簧疲勞強(qiáng)度的有效途徑是對(duì)彈簧進(jìn)行噴丸和氮化處理。彈簧的噴丸,除了傳統(tǒng)的應(yīng)力噴丸之外又發(fā)展了雙級(jí)噴丸。噴丸和氮化也可以復(fù)合使用。
(2)齒輪
汽車發(fā)動(dòng)機(jī)有高功率化的趨勢(shì),而傳動(dòng)器有緊湊小型化的傾向。這勢(shì)必加大傳動(dòng)齒輪的負(fù)荷,從而對(duì)齒輪鋼的彎曲疲勞強(qiáng)度和接觸疲勞強(qiáng)度的要求也相應(yīng)提高。
提高鋼中Ni、Cr、Mo等合金元素的含量可以提高齒輪鋼的淬透性和強(qiáng)度,但單純靠合金元素來(lái)強(qiáng)化齒輪鋼會(huì)使鋼的切削性能變壞、熱處理工藝復(fù)雜,原材料成本和生產(chǎn)成本都會(huì)大幅度提高。齒輪滲碳時(shí),為了防止或減少異常層的出現(xiàn),降低鋼中的Si和P含量,Mo量增加到0.35%~0.45%,并采用經(jīng)改良的碳氮共滲工藝。改進(jìn)的鋼種可使齒輪實(shí)物的沖擊壽命提高3~5倍,若在上述降低表面異常層鋼種加上強(qiáng)力噴丸,可使齒輪疲勞極限提高20%~30%。
齒輪鋼中的非金屬夾雜物是疲勞裂紋的起點(diǎn),會(huì)降低強(qiáng)力噴丸的強(qiáng)化效果,為此開發(fā)了高純凈度齒輪鋼。例如對(duì)SCM420HZ鋼,將氧濃度降到9ppm以下、磷濃度降到90ppm以下時(shí),與前述降低表面異常層的低Si高M(jìn)o鋼相比,齒輪齒根彎曲疲勞壽命提高10%~17%,接觸疲勞壽命提高25%。
高強(qiáng)度鑄鐵
鑄鐵由于其性能和成本方面的諸多優(yōu)點(diǎn),在汽車材料中仍然占有一席之地。鑄鐵材料的進(jìn)步更使之在汽車上的應(yīng)用出現(xiàn)了新亮點(diǎn)。
(1)球墨鑄鐵
鐵素體球墨鑄鐵拉伸強(qiáng)度可達(dá)500MPa,韌性也較高,因此多用于底盤零件,有的車型甚至用作轉(zhuǎn)向節(jié)等保安件。
珠光體球墨鑄鐵強(qiáng)度更高,在一些零件上可代替鍛鋼件。帶平衡塊的4缸轎車發(fā)動(dòng)機(jī)曲軸采用球墨鑄鐵加圓角滾壓強(qiáng)化,已成為美、德、法等國(guó)汽車廠家的標(biāo)準(zhǔn)工藝。因球鐵的密度比鋼約小10%,所以以球鐵代鋼可以產(chǎn)生一定的輕量化效果。
奧貝球鐵(ADI-AustemperedDuctileIron)具有很高的強(qiáng)度和韌塑性,按美國(guó)和德國(guó)標(biāo)準(zhǔn)制造的奧貝球鐵牌號(hào),其最高強(qiáng)度級(jí)別達(dá)到1400MPa,超過(guò)了調(diào)質(zhì)鋼和滲碳鋼的強(qiáng)度水平??梢杂肁DI代替鋼制造汽車輪轂、全輪驅(qū)動(dòng)雙聯(lián)桿、轉(zhuǎn)向節(jié)臂、發(fā)動(dòng)機(jī)正時(shí)齒輪、曲軸和連桿等。經(jīng)實(shí)物測(cè)量,代替鍛鋼制造曲軸可以降重10%,代替鋁合金制造載貨車輪轂每只可降重0.5kg。
(2)蠕墨鑄鐵
蠕墨鑄鐵(Vermiculargraphitecastiron)又稱緊密石墨鑄鐵(Compactedgraphitecastiron),其機(jī)械-物理性能和鑄造工藝性能介于灰鑄鐵和球墨鑄鐵之間,很適合制造強(qiáng)度要求較高和要承受熱循環(huán)負(fù)荷的零件,如氣缸體、氣缸蓋、排氣歧管和制動(dòng)鼓等。
蠕墨鑄鐵的發(fā)現(xiàn)與球鐵同時(shí),但由于蠕化工藝控制難度較大而應(yīng)用受到限制,SinterCast工藝控制系統(tǒng)為蠕鐵的應(yīng)用開辟了廣闊的前景。蠕鐵氣缸體比灰鑄鐵氣缸體降重16%,而結(jié)構(gòu)剛度則提高12%~25%。采用蠕鐵制造氣缸體還可改善摩擦磨損性能、降低振動(dòng)和噪音、改善排放。
粉末冶金材料
粉末冶金材料成分自由度大和粉末燒結(jié)工藝的近凈形特點(diǎn),其在汽車上的應(yīng)用有增加的趨勢(shì),特別是鐵基粉末燒結(jié)材料在要求較高強(qiáng)度的復(fù)雜結(jié)構(gòu)件上的應(yīng)用越來(lái)越多。
組裝式粉末冶金空心凸輪軸是近年來(lái)的新產(chǎn)品,它是由鐵基粉末冶金材料制成凸輪,然后用燒結(jié)或機(jī)械的辦法固定在空心鋼管上組成。與常規(guī)的鍛鋼件或鑄鐵件相比,可降重25%~30%。此種凸輪軸已在高速汽油機(jī)上使用,隨?柴油機(jī)凸輪軸服役工況的日益苛刻,粉末冶金空心凸輪軸有推向柴油機(jī)的趨勢(shì)。
粉末鍛造連桿已經(jīng)成功應(yīng)用,近年開發(fā)的一次燒結(jié)粉末冶金連桿技術(shù)的生產(chǎn)成本較低,可實(shí)現(xiàn)11%的輕量化。
五、塑料應(yīng)用
塑料在汽車行業(yè)的應(yīng)用前景同樣看好。目前世界上不少轎車的塑料用量已經(jīng)超過(guò)120千克/輛,個(gè)別車型還要高,德國(guó)奔馳高級(jí)轎車的塑料使用量已經(jīng)達(dá)到150千克/輛。國(guó)內(nèi)一些轎車的塑料用量也已經(jīng)達(dá)到90千克/輛??梢灶A(yù)見,隨著汽車輕量化進(jìn)程的加速,塑料在汽車中的應(yīng)用將更加廣泛。汽車輕量化使塑料作為原材料在汽車零部件領(lǐng)域被廣泛采用,從內(nèi)裝件到外裝件以及結(jié)構(gòu)件,塑料制件的身影隨處可見。目前,發(fā)達(dá)國(guó)家已將汽車用塑料量的多少,作為衡量汽車設(shè)計(jì)和制造水平的一個(gè)重要標(biāo)志從現(xiàn)代汽車使用的材料看,無(wú)論是外裝飾件、內(nèi)裝飾件,還是功能與結(jié)構(gòu)件,到處都可以看到塑料制件的身影。
汽車輕量化“相中”塑料汽車工業(yè)的發(fā)展與塑料工業(yè)的發(fā)展密不可分。近年來(lái)汽車輕量化成為降低汽車排放、提高燃燒效率的有效措施,也是汽車材料發(fā)展的主要方向,它使塑料在汽車中的用量迅速上升。目前發(fā)達(dá)國(guó)家已將汽車用塑料量的多少作為衡量汽車設(shè)計(jì)和制造水平的一個(gè)重要標(biāo)志。
統(tǒng)計(jì)顯示,汽車一般部件重量每減輕1%,可節(jié)油1%;運(yùn)動(dòng)部件每減輕1%,可節(jié)油2%。國(guó)外汽車自身質(zhì)量同過(guò)去相比,已減輕20%—26%。預(yù)計(jì)在未來(lái)的10年內(nèi),轎車自身的重量還將繼續(xù)減輕20%。而塑料等輕量化材料的開發(fā)與應(yīng)用,在汽車的輕量化過(guò)程中發(fā)揮著重大作用。
汽車材料應(yīng)用塑料的最大優(yōu)勢(shì)是減輕車體的重量。一般塑料的比重在0.9—1.5,纖維增強(qiáng)復(fù)合材料的比重也不會(huì)超過(guò)2.0,而金屬材料的比重,A3鋼為7.6,黃銅為8.4,鋁為2.7。這就使得塑料材料成為汽車輕量化的首選用材。從現(xiàn)代汽車使用的材料看,無(wú)論是外裝飾件、內(nèi)裝飾件,還是功能與結(jié)構(gòu)件,到處都可以看到塑料制件的影子。外裝飾件的應(yīng)用特點(diǎn)是“以塑代鋼”,減輕汽車自重,主要部件有保險(xiǎn)杠、擋泥板、車輪罩、導(dǎo)流板等;內(nèi)裝飾件的主要部件有儀表板、車門內(nèi)板、副儀表板、雜物箱蓋、坐椅、后護(hù)板等;功能與結(jié)構(gòu)件主要有油箱、散熱器水室、空氣過(guò)濾器罩、風(fēng)扇葉片等。
汽車輕量化,使包括聚丙烯、聚氨酯、聚氯乙烯、熱固性復(fù)合材料、ABS、尼龍和聚乙烯等在內(nèi)的塑材市場(chǎng)得以迅速放大。近兩年,車用塑料的最大品種--聚丙烯,每年以2.2%—2.8%的速度加快增長(zhǎng)。預(yù)計(jì)到2020年,發(fā)達(dá)國(guó)家汽車平均用塑料量將達(dá)到500千克/輛以上。
目前國(guó)外汽車的內(nèi)飾件已基本實(shí)現(xiàn)塑料化,塑料在汽車中的應(yīng)用范圍正在由內(nèi)裝件向外裝件、車身和結(jié)構(gòu)件擴(kuò)展。今后的重點(diǎn)發(fā)展方向是開發(fā)結(jié)構(gòu)件、外裝件用的增強(qiáng)塑料復(fù)合材料、高性能樹脂材料與塑料,并對(duì)材料的可回收性予以高度關(guān)注。統(tǒng)計(jì)顯示,全世界平均每輛汽車的塑料用量在2000年就已達(dá)105千克,約占汽車總重量的8%—12%。而發(fā)達(dá)國(guó)家汽車的單車塑料平均使用量為120千克,占汽車總重量的12%—20%。如奧迪A2型轎車,塑料件總重量已達(dá)220千克,占總用材的24.6%。目前,發(fā)達(dá)國(guó)家車用塑料已占塑料總消耗量的7%—8%,預(yù)計(jì)不久將達(dá)到10%—11%。
對(duì)于中國(guó)來(lái)說(shuō),塑料在汽車行業(yè)的應(yīng)用尚處于初級(jí)階段。目前,塑料等非金屬材料在國(guó)產(chǎn)車上的應(yīng)用狀況還比不上進(jìn)口車。在歐洲,車用塑料的重量占汽車自重的20%,平均每輛德國(guó)車使用塑料近300千克,占汽車總重量的22%。與國(guó)外相比,國(guó)產(chǎn)車的非金屬材料用量仍然偏少。國(guó)產(chǎn)車的單車塑料平均使用量為78千克,塑料用量?jī)H占汽車自重的5%—10%。
六、發(fā)動(dòng)機(jī)機(jī)體的輕量化技術(shù)
為了減少燃油消耗和降低二氧化碳排放,汽車的輕量化已經(jīng)成為眾所關(guān)注的焦點(diǎn)之一。研究表明,汽車整備質(zhì)量.每減少100kg,百公里油耗可降低0.3~0.6L。此外,汽車輕量化還可以提高汽車動(dòng)力性,節(jié)省材料,降低成本。有人預(yù)計(jì),到2010年汽車整備質(zhì)量平均將減輕17%,即250kg;轎車整備質(zhì)量將從目前的平均1300kg左右降至1000kg。
發(fā)動(dòng)機(jī)的輕量化,除了上述目的以外,還涉及到整車的質(zhì)量分布(汽車行駛動(dòng)力學(xué))。將汽油機(jī)改換成柴油機(jī)時(shí),往往會(huì)使發(fā)動(dòng)機(jī)變重(堅(jiān)固的結(jié)構(gòu)、渦輪增壓器、增壓空氣冷卻器、噴油裝置等),導(dǎo)致前橋軸荷增加,使得整車的均衡性受到了破壞。所以,轎車發(fā)動(dòng)機(jī)的輕量北已經(jīng)成為整車開發(fā)中一個(gè)不可忽視的問(wèn)題。
發(fā)動(dòng)機(jī)輕量化的途徑,首先是提高升功率,以降低發(fā)動(dòng)機(jī)單位功率的質(zhì)量。最先進(jìn)的功率密度指標(biāo)已逼近1kg/kW。以轎車柴油機(jī)為例,如果20世紀(jì)90年代初升功率還只是在20-30kW/L徘徊,那么自從20世紀(jì)末開始,其上升趨勢(shì)可謂“突飛猛進(jìn)”。如今,柴油機(jī)最大爆發(fā)壓力已經(jīng)達(dá)到20MPa,升功率達(dá)到60kW/L。
鋁合金機(jī)體鑄造工藝的討論
鋁合金機(jī)體的鑄造工藝從原理上可以分成多次使用的鑄型(金屬型)和一次使用的鑄型(砂型)。砂芯的制造方法也有所不同。當(dāng)今在大批量生產(chǎn)中最為常用的是砂型重力鑄造和壓鑄。砂型重力鑄造在成型方面提供了最大的自由度,可以采用封閉的氣缸蓋連接面(閉式頂板)。如果生產(chǎn)件數(shù)較高(年產(chǎn)20萬(wàn)件以上),那么壓鑄是一種經(jīng)濟(jì)的解決方案。壓鑄能以很短的節(jié)拍、精細(xì)的表面質(zhì)量和精確的尺寸實(shí)現(xiàn)鑄件薄壁結(jié)構(gòu)。然而,由于熔融金屬充型壓力很高不能使用砂芯,水套通常必須往上敞開(開式頂板)。這意味著氣缸筒缺乏徑向的支撐。但是,即使如此也未必會(huì)導(dǎo)致氣缸筒嚴(yán)重變形?,F(xiàn)在,甚至直噴式柴油機(jī)都可以做成開式頂板結(jié)構(gòu)。此外,壓鑄快速的充型過(guò)程易導(dǎo)致氣泡的生成,以致無(wú)法通過(guò)熱時(shí)效硬化改善力學(xué)性能。這個(gè)缺點(diǎn)可以利用擠壓鑄造加以避免,因?yàn)檫@種工藝采用的壓力較低,使得充型過(guò)程明顯地減緩,有可能進(jìn)行補(bǔ)縮。此外,壓鑄對(duì)于水套的長(zhǎng)度有著間接的影響。由于氣缸直徑、拉桿螺栓的位置、密封法蘭最小寬度以及必需的通常為0.5°的起模斜度等因素,實(shí)際制成的壓鑄機(jī)體的水套通常至多只能覆蓋活塞行程的70%。這會(huì)降低通過(guò)活塞環(huán)的熱流量,提高機(jī)油的熱負(fù)荷。在機(jī)體結(jié)構(gòu)方面,壓鑄有一些局限性。不過(guò)這些均可通過(guò)技術(shù)手段加以控制。機(jī)體是否采用壓鑄的工藝,首先還是取決于生產(chǎn)批量。
對(duì)于高負(fù)荷發(fā)動(dòng)機(jī)來(lái)說(shuō),選擇砂型鑄造更能通過(guò)合適的造型工藝、合金優(yōu)化和熱處理來(lái)生產(chǎn)可靠、耐久的發(fā)動(dòng)機(jī)機(jī)體。從零件成本看,充分利用砂型鑄造在成型方面較大的自由度,還可以將各種功能整合到氣缸體中去,在總體上減輕質(zhì)量,提高經(jīng)濟(jì)效益。
鋁合金機(jī)體結(jié)構(gòu)必須解決的問(wèn)題
灰鑄鐵氣缸體改用鋁合金鑄造,必須滿足一些額外的要求,分述如下
1確保氣缸筒滑移表面耐磨,不易變形
2滿足傳遞力流的要求
3控制主軸承間隙的擴(kuò)大
4鋁合金較低的彈性模量對(duì)聲學(xué)和振動(dòng)的影響
發(fā)動(dòng)機(jī)機(jī)體通過(guò)材料和結(jié)構(gòu)實(shí)現(xiàn)輕量化的途徑
1針對(duì)氣缸筒滑移表面的措施
2確保力流傳遞和控制主軸承間隙的措施
3確保結(jié)構(gòu)動(dòng)態(tài)特性的措施
性價(jià)比分析
對(duì)分別采用灰鑄鐵、蠕墨鑄鐵、鋁合金制造的2.0L4缸發(fā)動(dòng)機(jī)進(jìn)行了性價(jià)比分析,結(jié)果如表1。
按照年產(chǎn)40萬(wàn)件計(jì)算,則采用蠕墨鑄鐵時(shí),成本提高38%,毛坯成本和機(jī)加工成本以相同的程度提高;采用鋁合金機(jī)體時(shí),成本提高62%,主要是材料價(jià)格較高。鋁合金在機(jī)加工方面的成本優(yōu)點(diǎn)由于多種混合加工而被大大削弱了。
性價(jià)比分析表明,鋁合金結(jié)構(gòu)具有較大的潛力。只有當(dāng)總體布置非常緊湊(氣缸中心距較?。r(shí),蠕墨鑄鐵所擁有的優(yōu)勢(shì)的材料性能才會(huì)突現(xiàn)出來(lái)。
內(nèi)容來(lái)自百科網(wǎng)